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Abstract. It is shown that the elliptic Ruijsenaars—Schneider model can be obtained from the
affine Heisenberg double by means of the Poisson reduction procedure. The dynamataik
naturally appears in the construction.

1. Introduction

The recent development [1-7] in the theory of integrable many-body systems is mainly
related with the discovery [9] of dynamicaimatrices, i.er-matrices depending on phase
variables. One natural way to understand the origin of dynamicahtrices is to consider

the reduction procedure [10-14, 2, 6]. In this approach one starts with an initial phase space
‘P supplied with a symplectic action of some symmetry group. Considering a relatively
simple invariant Hamiltonian and factorizing the corresponding dynamics by the symmetry
group one obtains a smaller phase sp@&gg with a nontrivial dynamics. Then thé-
operator coming in the Lax representatiob/dr = [M, L] appears as a specific coordinate

on Preq While the dynamical-matrix describes the Poisson (Dirac) bracket on the reduced
space.

At present the reduction procedure has been elaborated for the majority of integrable
many-body systems and the correspondingatrices have been derived. One of the most
interesting exceptions is the elliptic Ruijsenaars—Schneider model [15]. Recently, two
different dynamicalr-matrices for this model were found in [7] and [8]. Both of these
r-matrices were obtained by a direct calculation and the question of their equivalence still
remains open.

In this paper we apply the Poisson reduction procedure to the affine Heisenberg double
(HD) [16] and derive the elliptic Ruijsenaars—Schneider model with the dynamiwailtrix.

The reason for using the affine HD becomes apparent due to its relation to integrable many-
body systems of Calogero type. As was shown in [17, 18] the Calogero—Moser and the
rational and trigonometric Ruijsenaars—Schneider hierarchies can be obtained by means of
the reduction procedure from the cotangent bundle of an affine Lie gf6éGiz) and from

a finite dimensional Heisenberg double. The affine Heisenberg double may be regarded
as a deformation of *G(z) and therefore one can suggest that the affine HD is a natural
candidate for the phase space standing behind the elliptic Ruijsenaars—Schneider system.

& E-mail address: arut@class.mi.ras.ru
|| E-mail address: frolov@class.mi.ras.ru

0305-4470/97/145051+13$19.5@C) 1997 IOP Publishing Ltd 5051
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The plan of the paper is as follows. In section 2 we briefly describe the affine HD
in terms of variables which are suitable for the reduction procedure. Then we fix the
momentum map, corresponding to the natural action of the affine Poisson—Lie group on the
HD. The solution of the momentum map equation is shown to be equivalent ftodperator
of the elliptic Ruijsenaars—Schneider model. In section 3 we study the Poisson structure of
the reduced phase space and prove that it coincides with that of the elliptic Ruijsenaars—
Schneider model. The dynamicaimatrix naturally appears in our consideration and is
equivalent to that obtained in [7]. In section 4 we show that the problem of solving the
equations of motion is equivalent to the specific factorization problem. We give brief
conclusions in section 5.

In our presentation we omit the detailed description of the HD and the proof of some
statements. A complete discussion will be given in a forthcoming publication.

2. Affine Heisenberg double

The general construction of a Poisson manifold known as the Heisenberg double was

elaborated in [16]. We shall discuss the HD for aﬁm). It is convenient to describe

the Poisson structure of the affine HD in the following form. Ue&fk) andC(x) be formal
Fourier series in a variable with values inGL(N). The matrix elements of the harmonics

of A(x) andC(x) can be regarded as generators of the algebra of functions on the HD. The
Poisson structure on the HD appears as follows:

;{Al(X), A2(y)} = —rz(x — y)A1(x) A2(y) — A1(x) A2(y)r+(x — )
+A2(Wrs(x — y — 280)A1(x) + A1(x0)r—(x — y + 2A) Az(y)
i{Cl(X), C2()} = —rx(x = Y)C1(x0)Ca(y) — C2(x)C2(Y)r£(x — y)
+ Co(y)ry(x — y)C1(x) + C1(x0)r—(x — y)Ca(y)
i{Al(x), Co(0)} = —r—(x = ) A1(x)Ca(y) — A1(x)Ca(y)r—(x — y + 2A)
+ Co(y)ri(x — ) A1(x) + Ar(x)r—(x — y + 28)Ca(y)
%{Cl(X), A2()} = —r(x — y)C1(x)A2(y) — C1(x)A2(y)r+(x — y — 2A)
+ Ao(Mri(x — y = 20)Ca(x) + C1(x)r—(x — y)A2(y)

wherey and A are complex numbers with Il > 0. Here we use a standard tensor
notation. The matrices. (x) are defined by their Fourier series as

ri(x)=ry+ P Z eI r-(x)=r_—P Z e

n>0 n>0
where
1
ry = EZEii ® Eii +ZEij®Eji
i i<j
andr_ = —Pr,. P and P is the permutation operator. It can easily be checked that

re(x) —r_(x) = 27 P8(x) and Pri(x)P = —r_(—x).
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In the region of convergence the(x) coincide with the standard trigonometriamatrix for
the affine Lie algebra. The Poisson subalgebra generateti(bywas introduced in [19]

to describe the Poisson structure@fﬁ)*.
Assuming the expansions

AX)=T+yJ(x)+... Cx)=g(x)+... 2A = yk
wherek is a (fixed) central charge, in the deformation limit> O we recover the standard
Poisson structure on the cotangent burﬂifef}/L(W) over the level, centrally extended
current groqu/L(W).
The action of the current grouﬁm) on the HD:
AX) = T x — A)AX)T(x + A)

Cx) = T7Yx — A)C)T(x — A)
is trE\l?/()isson one. We can thereby consider the Poisson reduction of HD over the action
of GL(N). .
The momentum map taking value &L (N) reads as follows:
M(x)=A"Yx - A)C(x — A)AKx — A)C 7 Hx + A).

It is easy to check thad (x) does generate the action of the current group. We fix the
value of M (x) as:

. ) 1— —ix
M(x) =e" (1 — 2mid: (x) ie K) . (2.2)
Hereh ande are arbitrary complex numbers
1 1 &1 e e
Sg(x)=;(9(x+%g)—9(x—%g)): e n:z_:ooﬁ(el 2 —e! z)el X

and K is a constant matriX = e ® ¢’, wheree is the N-dimensional vector with entries
€ = 1/«/NT

Although equation (2.1) can be solved for any valuespfthe reduced phase space
remains to be infinite dimensional after performing the factorization procedure. To extract
a finite-dimensional phase space let us carry out the following trick. By multiplying the
both sides of (2.1) o (x + A), one obtains
1— efix
[

Cx+A)—e A (x — A)C(x — AA(x — A) = 2718, (x)K C(x + A).

2.2)

The left-hand side of this equation does not have any explicit dependencefmfor the
right-hand side, wher tends to zerog,(x) tends tos(x) and the right-hand side is well
defined only if the function(1 — e '*)/i)C(x + A) is well defined atr = 0. Hence, this
equation can be solved only for meromorphic functigha + A) with poles of the first
order. In this case lim, o8, (x)((L — e ™)/I)C(x + A) = §(x) Res_o C(x + A).

So we define the constraint surface as being the solution of the equation

Cx+A)—e A x — A)C(x — A)A(x — A) = 27i8(x) K Res_o C(x + A)
and in what follows we shall explore solutions of this equation.

1 It is worth noting that in the deformation limj¢ — 0, #/y — constante/y — constant the constraint (2.1)
reduces to that used in [17] to obtain the trigonometric Ruijsenaars model.
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We start with the following difference equation:
Cx+A)—e"DIC(x — A)D = 27i8(x)Y (2.3)
where D is a constant diagonal matrix ariflis an arbitrary constant matrix. Performing
the Fourier expansion we obtain a solution of (2.3) in the form

) o elnx
C(x) =1 Z Z einA _ e—is,’jefinA Yij Eij
ij n=—00
where we use the notation; = 4 + g;j, D = €', q;; = q; — q;. It is useful to introduce
the function of two complex variables

o Inx

. e
w(x’ S) =1 Z einA _ efisefinA .

n=—oo

It is clear thatw(x, s) is a meromorphic function of for any x : [Imx| < Im A and has
two obvious properties
() wx,s+2m) =w(x,s),
(i) w(x, s +2A) = "> Fw(x, s).
Moreover, as a function of it has simple poles at,:2r, +4x, ... and +2A, +4A, ...,
Res_ow = 1. By these datav is uniquely defined as
o(s +x —A) ¢(m)
)= —"——"“expl—""T(x—A)s ). 2.4
wiros) = 02 exp(— 47 - ) @4
Hereo(x) and¢(x) are the Weierstrass- and ¢-functions with periods equal tor2and
2A. Thus, equation (2.3) has the unique solution

_y o thtx—A) (80 My E,
C(x)_%:a(x—A)o(qij+h)eXp< —C A)(h+q,,>>Y,JE,,

:ZUJ()C,S,‘J‘)Y,'J'EU. (25)

ij

Now we turn to the momentum map equation
Cx+A)—e A x — A)C(x — A)A(x — A) = 27iK Z8(x) (2.6)

whereZ = Res_oC(x + A).
By using a generic gauge transformation we can diagonalize theAielthen equation
(2.6) takes the form of (2.3)

C'(x+A)—e"DIC'(x — A)D = 2niK'Z'8(x) (2.7)
where
Ax) =T((x — A)DT Yx + A) Cx)=Tkx—AC' )T x—A)
for someT andZ’ = Res_x C'(x). We also have
K =TYOKTO0) =T 0)e®eTO) =fR (fivy=1
i.e. f = T1(0)e ande'T(0) = v'. According to (2.5) we find
C'(x) =Y wix, s;;))(K'Z)i; Eij.
tj
Taking the residue of”’(x) at the pointx = A we arrive at the compatibility condition
Z'=K'7Z = f®v'Z (fiv)y=1
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The solution of this equation 8’ = f ® g’, whereg is an arbitrary vector. Now it is easy
to find Z:

Z=TOZTYN)=TO)fRgT 10 =exgT 10 =cx.
Thus, we obtain
Cx+A)—e A (x — A)C(x — AA(x — A) = 27i(e @ €') (e ® b)) (x) (2.8)

wheree ® b' is a residue ofC(x) atx = A

In summary, equation (2.6) has a solution for any figl&aind for any fieldC, having
a residue atr = A of the forme ® b'. For a fixed fieldA and a vectow this solution is
unique. Note that, in generalp, ¢) # 1. The form of the right-hand side of (2.8) shows
that the isotropy group of this equation is

Gisot = {T(x) C G(x) | T(Q)e = xe, 1 € C}.

This group transforms a solution of (2.8) into another one, so the reduced phase space is
defined as

all solutions of (2.6
Gisot .

red =

Since the grouGiset is large enough to diagonalize the field we can parametrize the
reduced phase space by the sectién L), where L is a solution of (2.6) withA = D.
One can easily see th@q is finite dimensional and its dimension is equal t§,4.e. N
coordinates oD plus N coordinates of the vectér Due to equation (2.5) the corresponding
L-operator has the following form:

Zo(qij+h+x—A)

L(x) = 7 o(x — A)o(qij +h)

exp<—§§f) (x — A)(h + q,-,-)> eib; Eij. (2.9)

Multiplying L(x) by the function(c (x — A)o (h) /o (x — A + h))et =M/ performing
the gauge transformation by means of the diagonal maffiXx*—29/* and making the
shift x — x + A we obtain theL-operator of the elliptic Ruijsenaars—Schneider model:

h
LRU'I( ) = CT((X)i(h)) {(m)xh/m ;(n)xq/rrL(x + A)e—{(ﬂ)xq/n (2_10)

Let us briefly discuss the Hamiltonian. It is well known that the simplest non-trivial
Hamiltonian invariant with respect to the action of the current group is given by:

H=/mnam (2.11)

wherea is a constant. It is not difficult to show that on the reduced phase space

: N
Hieq = b; 2.12
4= f(l—e " Z: (2.12)

that, up to a constant, is the simplest Hamiltonian of the elliptic Ruijsenaars—Schneider
model.
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3. The Poisson structure on the reduced space

In this section we are going to prove that the Poisson structure on the reduced phase
space does indeed coincide with the Poisson structure of the elliptic Ruijsenaars—Schneider
model. In other words we need Poisson brackets for the coordifatasdb. According
to the general Dirac construction one should find a gauge invariant extension (we mean
the invariance under the action Gfsy) of functions on the reduced phase sp&g to a
vicinity of P,eq and then calculate the Dirac bracket.

One can easily write down the gauge invariant extension for the matficasd L (x)
while the bracket for the coordinatd3; andb; can be extracted from the bracket fbr
and L(x). This extension appears as follows:

D — D[A] = T {A](x — A)A(xX)T[A](x + A) (3.1)

L(x) = L[A, C](x) = T"A]l(x — A)C(x)T[A](x — A). (3.2)

Some comments are in order. Equation (3.1) is a solution of the factorization problem for
A(x). Generally this solution is not unique but we fix the matfikA] by the boundary
conditionT[A](0)e = e that kills the ambiguity and makes (3.1) to be correctly defined. It
is obvious that orPeq: T[A] = 1 andL[A, C](x) = L(x).

We start with calculation of the Poisson bracket #o¢x) and £L(y). We postpone
discussion of the contribution from the second-class constraints to the Dirac bracket to the
end of the section. By definition, one has

{L1, Lo}y = ({T1, T2} L1Lo — Lo{T1, T2} L1 — La1{T1, T2} L>
+ L1Lo{Ty1, To} + {C1, Co} — {T1, Co} Ly — {C1, To}L>

+ Lo{C1, To} + L1{T1, C2}) | pey- (3.3)

Here we have taken into account thgtA]|p,, = 1.
Let us first calculate

(Cij (), TuM) =Y f dz {Cij (x), An(2))

m,n

8T (y)
8Aun(2)

Performing the variation of both sides of (3.1), we obtain
X(x)=t(x — A)D — Dt(x + A) +d (3.4)
whereX (x) = §A(x), t(x) = 8T (x) andd = éD.
The general solution of (3.4) is

1 1
tx) =0 — o ;/dz Ew(x —2,qij)Xij () Ejj. (3.5)

Here Q is some constant diagonal matrix and the functig@x, 0) should be understood as

B ¢(m) i
1_e—is> Sl A e Ay

Note that these functions solve the equations

w(x,0) = Iim0 (w(x, g) —

1 i 1
ZTTi(w(x + A, gij) —e ' Mw(x — A, gij)) = 8(x) — 531‘;-

The solutions (x) obeying the condition(0)e = 0 has the following form:

1 1 1
t(x) = o Z/dz (Dw(_z’ i) Xij)Ei; — Ew(x -2z, Qij)Xij(Z)Eij)~ (3.6)
] i y
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Performing the variation of (3.6) with respect X5,,(z) one obtains
3T (x)
8Amn (2)|p,,

Thus on the reduced space we obtain

1 1
=08 v+ A 2) = (W2, Grn)Skikm — W — 2, @) SkmSin) -
2 Dy

1
;{Cl(X), To(y — M}Hred = k12(x, y)L1(x) — L1(x)w12(x, y)
where

K12(x,y) = trs / dz (DarP3(x — z — 2A) — ri3(x — 2) D3) Q23(y, 2)

w12(x, y) = 1r3 / dz (Dgri®(x —z —28) = rB(x — 2)D3) Q23(y, 2).
We also obtain

;{Tl(x = A), Co()} = —Praa(y, x) PLa(y) + La(y) Pwio(y, x) P.
By using the relation

D; Qf1(x, 2) — D; Q1 (x, 2 — 2A) = 8(x — 2)8udjy — 8(2 — A)8ikdu = S
we find

Kij ki(x, y) = —ry (X — ¥)ij w0 + Zr+(x — A)ij kmu

wij 1 (x, y) = kij (x, y) + 21 D; Qi (v, x).
Recall that

1
;{Cl(X), Co(0)} = —re(x = Y)C1(x)Cao(y) — CL(X)Co(Y)rs(x — y)

+ Co(y)ri(x — y)C1(x) + C1(x)r—(x — y)Ca(y).
Substituting{C, T}, {T, C} and{C, C} brackets into (3.3) we can rewrite thi€, £} bracket
in the following form:

1
;{Cl(X), Lo} = —Li(®)La(k™ (x, y) — k™ (x, ) La(x) La(y)

red
+ L1(x)s™(x, y)La(y) + La(y)s ™ (x, y)L1(x) 3.7
where
k™ (x,y) =r-(x —y) + k12(x, y) — Praz(y, ) P — {Ta(x — A), Ta(y — A)}
K (x,y) =rp(x = y) + w12(x, y) = Pona(y, x) P — {Ti(x — A), Ta(y — A)}
sT(x,y) =r-(x —y) + w12(x, y) — Praza(y, x) P — {T1(x — A), To(y — A)}

st y) =ri(x —y) + k12(x, y) — Pora(y, x)P — {Ti(x — A), To(y — A)}.

It is easy to findPk*(x, y)P = —P8(x —y) —k*(y, x) and Ps*(x, y) P = +sT(y, x). We
also have one more important identity:

K (e, )+ k() =st(x,y) + 57 (x, ).
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To complete the calculation we should find the bradigt(x — A), Ty (y — A)} on the
reduced space. The straightforward manipulations lead to a divergent result. By this reason
we define this bracket as follows:

{Tij(x — A), Tu(y — A)}
=3 lIm ({75 (x = A), TE(y = M} +{T5(x = A), Tuly — A)})

whereT; (x) is defined as a solution of the factorization problem with the boundary condition
T (¢)e = e. We have

{Tj(x — A), T (y — M)} = / dz dz’ Qy), (x, 2) Q% * (v, ) Am(2), Asp (2}

=VY / dz dz’ (—r+(z - Z/)mn sp(Dn Qf,{n(x’ 2)

— Dy QY (x,z = 20) S8 2 (y, 2)

— 27 Py p8(z — 2 +20)D,, 031, (x, 2) 855 (v, 2)).

One can prove the cancellation of the singularities as 0. The result for the bracket
(T, T} is

1
;{Tij(x —A), Tu(y — A}

= —r(x—=yiju+ ZM(X — A)ij kmbu + ZL(A = Y)im ubij

1 1 1
+Tw(x —y+ A, qiu)djrbi — Tw(x’ qir)8ji0k + Tw()’, qri)Sijbir

1 1 C(m)
+§8ij5ik851 + 0 ¢(qik) — — ik 80k (L — 8ix)

1
= 5 2 (Eap = Ena)ixdijbu.

a<b

Combining all the pieces together and taking into account the ideatityw(x,s) =
—w(—x, —s) we obtain the following expression for the coefficients:

1 1
ki u(x,y) = _TC(‘]ik)Sij‘skl(l —8ix) — 7 Cx=y)+(y—A) —¢(x — A))6;jixdu

1
- (wx —y+ A, qi)dudjx + w(y, gui)diudij — w(x, gix)djkdk) (L — i)

1¢(m) 1
1 g+ 3B — Enadudiu
a<b
1 (o)
kit (e, y) = T (C(X —-y) - T(X - y)) 8i;0ixbi1

1
+ : (wx —y+ A, gi)8jii — £(qi)dij8) (1 — i)
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1 C(ﬂ)
thfsl]akl + 3 Z(Eab Eb(l)lk(slj8kl

a<b

1
Sij kz(x,y)=—7 (C( —A)—m(y—A)) Sikdit

1
-7 (w(y, i) 8i + £ (qix)8ij8k) (1 — i)

1¢(m)
77,815 + = E, Epd)ikdiid
z qik0ij Okl E( b — Eba)ik8ijou

u<b
siu(x y) = (;“(x —A) - &( - A)) 8ij8ixdir

l
T (w(x, gir)8jkdir — £(qir)8ijdu) (L — 8ix)

1 (ﬂ)
g- q1k8116kl + Z(Eab Eba)lkalj(skl

a<b

It is instructive to note that one can check by direct calculation that thegeeny; ;61 /in
in the expressions obtained for this and thes’s does not contribute to the bracKet, £}.
Recall (see equation (2.9)) that

L) = Jlﬁwu, Wb (3.8)

S0 to obtain the brackdb;, b;} it is sufficient to examine only théL;;, L;;} bracket. The
crucial point which can be checked by the direct calculation is that the brack&t ofith
the constraint (2.2) vanishes @q in the limit e — 0. Thus, there is no contribution from
the Dirac term to thdL;;, L;;} bracket.

By substituting the expressions obtained abovefands in equation (3.7), one obtains

fori #j

1 1 1

;{Lii(x), Lij(y)} = TLji(x)Lij(y)w(x —y+A,q;5) — TLij(x)Lji()’)w(x —y+ A, g
(3.9)

It follows from this equation that
w(x, s;)w(y, sip)wx—y+A, gij) —wx, s;w(y, sj)wx—y+A, gji)

[
—{b;, b} = b;b;
y (i bih = il w(x, Hw(y, h)
(3.10)
By using one of the known elliptic identities f8]we obtain
[
;{bn bi} = bib; (2¢(qi;) — ¢(qij +h) — $(qij — W) . (3.11)

To complete the examination of the Poisson structure on the reduced phase space one
should find the brackdtC, D} and{D, D}. Performing the straightforward but rather tedious

1 It is interesting to note that this identity can easily be obtained fromxtheindependence condition for the
right-hand side of (3.10).
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calculations following the same line as above, we find
{D[A]1, D[A]2}lrea =0 (3.12)

1
;{E(x)l» D[Al2}red = — Z Lij(x)D;E;; ® Ej;. (3.13)
i,j
It is worthwhile to point out that there are no Dirac terms in these brackets be&qude

is invariant with respect to the action of the whole affine graup(nN).
Now for the convenience of the reader, we list the Poisson brackets obtained in terms
of the coordinates ofPeg:

{gi.qj} =0

|
;{qz‘v bj} = bji; (3.14)

;—{bi, b} = bib; (20(gi)) — £(qij + h) — C(qiy — ).

One can see that the dynamical system defined by (3.14) and (2.12) is simply the elliptic
Ruijsenaars—Schneider model.
In [7] the dynamical--matrix for LR"I was obtained by direct calculation with the help
of the Poisson structure (3.14). Comparing thenatrix coefficientsk and s with those
in [7] we see that, in fact, they differ by the tens@EMb(Eab — Epa)ix8ijdi. However,
in our calculations of the brackéL, £} we ignored the contribution from the Dirac term.
We conjecture that the Dirac term is alone responsible for cancelling this tensor.

4. Equations of motion

The equations of motion for the Hamiltonian (2.12) are given by

D = {tr L(x), D} = —y L(x)diag D (4.1)
and

L(y) = {tr L(x), L(»)} = [L(y). M(x. y)] (4.2)
where
M(x,y) = —yi Z (W, =g Lk Ege — wx —y + A, —qu) LX) Ew) - (4.3)

kl

Here we use equation (3.7) and the explicit formkofind s. Since trL(x) is invariant
function the contribution from the Dirac term vanishes. For the the convenience of the reader
we note that by using the elliptic function identities [8] one can rewmte= M (x+A, y+A)

in the following form:

Y {(x+h) —g(x—y)
M= il(x’h)< 1) L(y+4) —(C(x+h)—é“(x))(2i:bi>1 (4.4)
¢(m)
+ Z o Z(C(Qik) — &(qik —h)bi — . ZbkEkk (4.5)
x i7k x
n Z ¢(qu) —lé“(qkl +y+ h)Lkl(y n A)Ek,> (4.6)
"z (v, h)
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where we have introducddx, 7)) = w(x+ A, h). The first two terms in (4.4) are irrelavant,
so M coincides with the standartf-matrix of the elliptic RS system.

We show that the general solution of the equations of motion for the elliptic Ruijsenaars—
Shneider model is given by

D(t) = D [e 7L Dy 4.7
where D = D[ A] denotes the solution of the factoriztion problem (3.1):
A(x) =T (x — A)D[A]T (x + A) ! (4.8)

and Do, and Lo(x) are the coordinates and tieoperator at = 0, respectively.
To prove (4.7) we start with calculating the derivatiir):

c o §D[A] d(A:)i;(2)
D(1) _/dz 541;(2) ar

(4.9)

A=A,

where A, (x) = e=27Lo®i Dy One can find the derivativéD[A]/3A;;(z) by performing
the variation of (4.8):

(T7Y(x — A)ST (x — A)D[A] — D[ANT Y(x + A)ST(x + A)) + 8D = X (x) (4.10)

where the notatioX (x) = T71(x — A)8A(x)T (x + A) was introduced. In contrast to (3.4),
in equation (4.10) we do not impose the constrdint 1.
Now we solve (4.10) fob D:

dx
SDZ/EX(x)kkEkk- (411)

Equation (4.10) also allows one to find the matrix

T‘%)W()—Z[dZ L (=2 )X @By — —w(x — 2, i) X @ E
X X —k.l ﬁ ka 2, gkl Z)ki Ekk kax 2, gkl 2 )kl Lkl

(4.12)
which will be used in what follows. From equations (4.11), (4.12) we find
SD[ Al 1.,
= T — A)T; A 4.13
SAy) 20 b (z = M)Tj(z + A) (4.13)
and
_ 8T (x) Sl w(—2, Gks) ,._1
T1 ==y = 2l AT A
( (X)MU(Z))H omi 2 Dy W @ )T (z + A)
1 wix—z,9u) .1
- TN~ AT A). 4.14
5 Dy v @ = M)Tj(z + A) (4.14)

Substituting equation (4.14) in (4.9) and taking into accodnty) = —27y Lo(x)A(x),
we obtain

D = —y / dz TNz — A)Lo(2)imTun(z — AT, Nz — A)A(2)5 Tin(z + A)
(4.15)

which, with the help of (4.8), reads as follows:

D)= —y f dz (T2 = A)Lo(2)T (2 — A))atag D(O). (4.16)
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The last formula implies the notation

L,(x) =T x — A)(@)Lo(x)T(x — A1) (4.17)
which provides the Lax representatiod,dx)/dr = [L,(x), M(x)] with M(x) = T~*(x —
AT (x — A).

Let us show that the Lax operat(ﬁr,(x) coincides vyith theL-operator of the elliptic
Ruijsensaars—Schneider model. To this end we calciate) explicitly. We have

. B 8T (x — A) dA, (2);
M = Tl x-—n)—+ J
kZ(X) / < (x ) 8A1] (Z) >k] dt

A=A,

Substituting equation (4.14) and using the rela#ofiw(x, s) = —w(—x, —s) we obtain
M(x) = —yi f dz Z (w(z, —~qu) Li (D Ee — w(z — x + A, —le)it(Z)szkl)- (4.18)
kl

Note that this expression literally coincides with (4.3) if we chahgéor L. Since att =0
the operatord. and L are equal taLo, they coincide for any.

5. Conclusion

We have proved that the elliptic Ruijsenaars—Schneider model can be obtained by means of
a reduction procedure. It is worth pointing out that we have used not the Hamiltonian, but
rather the Poisson reduction technique. Our construction is specified by the choice of the
trigonometricr-matrix for the Poisson structure on the HD and by fixing the special value

of the momentum map. By varying the right-hand side of the momentum map equation one
can derive some other systems. For instance, it is not difficult to specify the momentum
map equation in a way that leads to the elliptic Calogero—Moser model. It clarifies the
coincidence of the dynamicalmatrices for these two models pointed out in [7].

We have considered the simplest example of the HD @dr(N). It seems to be
interesting to examine the Poissonian reductions of the HD that correspond to some other
choices of Lie groups or-matrices.
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