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Abstract. It is shown that the elliptic Ruijsenaars–Schneider model can be obtained from the
affine Heisenberg double by means of the Poisson reduction procedure. The dynamicalr-matrix
naturally appears in the construction.

1. Introduction

The recent development [1–7] in the theory of integrable many-body systems is mainly
related with the discovery [9] of dynamicalr-matrices, i.e.r-matrices depending on phase
variables. One natural way to understand the origin of dynamicalr-matrices is to consider
the reduction procedure [10–14, 2, 6]. In this approach one starts with an initial phase space
P supplied with a symplectic action of some symmetry group. Considering a relatively
simple invariant Hamiltonian and factorizing the corresponding dynamics by the symmetry
group one obtains a smaller phase spacePred with a nontrivial dynamics. Then theL-
operator coming in the Lax representation dL/dt = [M,L] appears as a specific coordinate
on Pred while the dynamicalr-matrix describes the Poisson (Dirac) bracket on the reduced
space.

At present the reduction procedure has been elaborated for the majority of integrable
many-body systems and the correspondingr-matrices have been derived. One of the most
interesting exceptions is the elliptic Ruijsenaars–Schneider model [15]. Recently, two
different dynamicalr-matrices for this model were found in [7] and [8]. Both of these
r-matrices were obtained by a direct calculation and the question of their equivalence still
remains open.

In this paper we apply the Poisson reduction procedure to the affine Heisenberg double
(HD) [16] and derive the elliptic Ruijsenaars–Schneider model with the dynamicalr-matrix.
The reason for using the affine HD becomes apparent due to its relation to integrable many-
body systems of Calogero type. As was shown in [17, 18] the Calogero–Moser and the
rational and trigonometric Ruijsenaars–Schneider hierarchies can be obtained by means of
the reduction procedure from the cotangent bundle of an affine Lie groupT ∗G(z) and from
a finite dimensional Heisenberg double. The affine Heisenberg double may be regarded
as a deformation ofT ∗G(z) and therefore one can suggest that the affine HD is a natural
candidate for the phase space standing behind the elliptic Ruijsenaars–Schneider system.
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‖ E-mail address: frolov@class.mi.ras.ru
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The plan of the paper is as follows. In section 2 we briefly describe the affine HD
in terms of variables which are suitable for the reduction procedure. Then we fix the
momentum map, corresponding to the natural action of the affine Poisson–Lie group on the
HD. The solution of the momentum map equation is shown to be equivalent to theL-operator
of the elliptic Ruijsenaars–Schneider model. In section 3 we study the Poisson structure of
the reduced phase space and prove that it coincides with that of the elliptic Ruijsenaars–
Schneider model. The dynamicalr-matrix naturally appears in our consideration and is
equivalent to that obtained in [7]. In section 4 we show that the problem of solving the
equations of motion is equivalent to the specific factorization problem. We give brief
conclusions in section 5.

In our presentation we omit the detailed description of the HD and the proof of some
statements. A complete discussion will be given in a forthcoming publication.

2. Affine Heisenberg double

The general construction of a Poisson manifold known as the Heisenberg double was
elaborated in [16]. We shall discuss the HD for affinêGL(N). It is convenient to describe
the Poisson structure of the affine HD in the following form. LetA(x) andC(x) be formal
Fourier series in a variablex with values inGL(N). The matrix elements of the harmonics
of A(x) andC(x) can be regarded as generators of the algebra of functions on the HD. The
Poisson structure on the HD appears as follows:

1

γ
{A1(x), A2(y)} = −r∓(x − y)A1(x)A2(y)− A1(x)A2(y)r±(x − y)

+A2(y)r+(x − y − 21)A1(x)+ A1(x)r−(x − y + 21)A2(y)

1

γ
{C1(x), C2(y)} = −r∓(x − y)C1(x)C2(y)− C1(x)C2(y)r±(x − y)

+C2(y)r+(x − y)C1(x)+ C1(x)r−(x − y)C2(y)

1

γ
{A1(x), C2(y)} = −r−(x − y)A1(x)C2(y)− A1(x)C2(y)r−(x − y + 21)

+C2(y)r+(x − y)A1(x)+ A1(x)r−(x − y + 21)C2(y)

1

γ
{C1(x), A2(y)} = −r+(x − y)C1(x)A2(y)− C1(x)A2(y)r+(x − y − 21)

+A2(y)r+(x − y − 21)C1(x)+ C1(x)r−(x − y)A2(y)

where γ and1 are complex numbers with Im1 > 0. Here we use a standard tensor
notation. The matricesr±(x) are defined by their Fourier series as

r+(x) = r+ + P
∑
n>0

e−inx r−(x) = r− − P
∑
n>0

einx

where

r+ = 1

2

∑
i

Eii ⊗ Eii +
∑
i<j

Eij ⊗ Eji

andr− = −Pr+P andP is the permutation operator. It can easily be checked that

r+(x)− r−(x) = 2πPδ(x) and Pr+(x)P = −r−(−x).
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In the region of convergence ther±(x) coincide with the standard trigonometricr-matrix for
the affine Lie algebra. The Poisson subalgebra generated byA(x) was introduced in [19]

to describe the Poisson structure of̂GL(N)
∗
.

Assuming the expansions

A(x) = I + γ J (x)+ . . . C(x) = g(x)+ . . . 21 = γ k
wherek is a (fixed) central charge, in the deformation limitγ → 0 we recover the standard
Poisson structure on the cotangent bundleT ∗ĜL(N) over the level-k, centrally extended
current groupĜL(N).

The action of the current group̃GL(N) on the HD:

A(x)→ T −1(x −1)A(x)T (x +1)
C(x)→ T −1(x −1)C(x)T (x −1)

is the Poisson one. We can thereby consider the Poisson reduction of HD over the action

of G̃L(N).

The momentum map taking value iñGL(N)
∗

reads as follows:

M(x) = A−1(x −1)C(x −1)A(x −1)C−1(x +1).
It is easy to check thatM(x) does generate the action of the current group. We fix the
value ofM(x) as:

M(x) = eih

(
1− 2π iδε(x)

1− e−ix

i
K

)
. (2.1)

Hereh andε are arbitrary complex numbers

δε(x) = 1

ε

(
θ(x + 1

2ε)− θ(x − 1
2ε)
) = 1

2π iε

∞∑
n=−∞

1

n
(ein ε2 − e−in ε2 )einx

andK is a constant matrixK = e ⊗ et , wheree is theN -dimensional vector with entries
ei = 1/

√
N†

Although equation (2.1) can be solved for any value ofε, the reduced phase space
remains to be infinite dimensional after performing the factorization procedure. To extract
a finite-dimensional phase space let us carry out the following trick. By multiplying the
both sides of (2.1) onC(x +1), one obtains

C(x +1)− e−ihA−1(x −1)C(x −1)A(x −1) = 2π iδε(x)K
1− e−ix

i
C(x +1).

(2.2)

The left-hand side of this equation does not have any explicit dependence onε. As for the
right-hand side, whenε tends to zero,δε(x) tends toδ(x) and the right-hand side is well
defined only if the function((1− e−ix)/i)C(x + 1) is well defined atx = 0. Hence, this
equation can be solved only for meromorphic functionsC(x + 1) with poles of the first
order. In this case limε→0 δε(x)((1− e−ix)/i)C(x +1) = δ(x)Resx=0C(x +1).

So we define the constraint surface as being the solution of the equation

C(x +1)− e−ihA−1(x −1)C(x −1)A(x −1) = 2π iδ(x)K Resx=0C(x +1)
and in what follows we shall explore solutions of this equation.

† It is worth noting that in the deformation limitγ → 0, h/γ → constant,ε/γ → constant the constraint (2.1)
reduces to that used in [17] to obtain the trigonometric Ruijsenaars model.
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We start with the following difference equation:

C(x +1)− e−ihD−1C(x −1)D = 2π iδ(x)Y (2.3)

whereD is a constant diagonal matrix andY is an arbitrary constant matrix. Performing
the Fourier expansion we obtain a solution of (2.3) in the form

C(x) = i
∑
ij

∞∑
n=−∞

einx

ein1 − e−isij e−in1
YijEij

where we use the notationsij = h + qij , D = eiq , qij = qi − qj . It is useful to introduce
the function of two complex variables

w(x, s) = i
∞∑

n=−∞

einx

ein1 − e−ise−in1
.

It is clear thatw(x, s) is a meromorphic function ofs for any x : | Im x| < Im1 and has
two obvious properties

(i) w(x, s + 2π) = w(x, s),
(ii) w(x, s + 21) = ei1−ixw(x, s).

Moreover, as a function ofs it has simple poles at 0,±2π,±4π, . . . and±21,±41, . . .,
Ress=0w = 1. By these dataw is uniquely defined as

w(x, s) = σ(s + x −1)
σ(x −1)σ(s) exp

(
−ζ(π)

π
(x −1)s

)
. (2.4)

Hereσ(x) and ζ(x) are the Weierstrassσ - and ζ -functions with periods equal to 2π and
21. Thus, equation (2.3) has the unique solution

C(x) =
∑
ij

σ (qij + h+ x −1)
σ(x −1)σ(qij + h) exp

(
−ζ(π)

π
(x −1)(h+ qij )

)
YijEij

=
∑
ij

w(x, sij )YijEij . (2.5)

Now we turn to the momentum map equation

C(x +1)− e−ihA−1(x −1)C(x −1)A(x −1) = 2π iKZδ(x) (2.6)

whereZ = Resx=0C(x +1).
By using a generic gauge transformation we can diagonalize the fieldA. Then equation

(2.6) takes the form of (2.3)

C ′(x +1)− e−ihD−1C ′(x −1)D = 2π iK ′Z′δ(x) (2.7)

where

A(x) = T (x −1)DT −1(x +1) C(x) = T (x −1)C ′(x)T −1(x −1)
for someT andZ′ = Resx=1 C ′(x). We also have

K ′ = T −1(0)KT (0) = T −1(0)e ⊗ etT (0) = f ⊗ vt 〈f, v〉 = 1

i.e. f = T −1(0)e andetT (0) = vt . According to (2.5) we find

C ′(x) =
∑
ij

w(x, sij )(K
′Z′)ijEij .

Taking the residue ofC ′(x) at the pointx = 1 we arrive at the compatibility condition

Z′ = K ′Z′ = f ⊗ vtZ′ 〈f, v〉 = 1.
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The solution of this equation isZ′ = f ⊗ gt , whereg is an arbitrary vector. Now it is easy
to find Z:

Z = T (0)Z′T −1(0) = T (0)f ⊗ gtT −1(0) = e ⊗ gtT −1(0) ≡ e ⊗ bt .

Thus, we obtain

C(x +1)− e−ihA−1(x −1)C(x −1)A(x −1) = 2π i(e ⊗ et )(e ⊗ bt )δ(x) (2.8)

wheree ⊗ bt is a residue ofC(x) at x = 1.
In summary, equation (2.6) has a solution for any fieldA and for any fieldC, having

a residue atx = 1 of the forme ⊗ bt . For a fixed fieldA and a vectorb this solution is
unique. Note that, in general,〈b, e〉 6= 1. The form of the right-hand side of (2.8) shows
that the isotropy group of this equation is

Gisot = {T (x) ⊂ G(x) | T (0)e = λe, λ ∈ C}.

This group transforms a solution of (2.8) into another one, so the reduced phase space is
defined as

Pred= all solutions of (2.6)

Gisot
.

Since the groupGisot is large enough to diagonalize the fieldA, we can parametrize the
reduced phase space by the section(D,L), whereL is a solution of (2.6) withA = D.
One can easily see thatPred is finite dimensional and its dimension is equal to 2N , i.e.N
coordinates ofD plusN coordinates of the vectorb. Due to equation (2.5) the corresponding
L-operator has the following form:

L(x) =
∑
ij

σ (qij + h+ x −1)
σ(x −1)σ(qij + h) exp

(
−ζ(π)

π
(x −1)(h+ qij )

)
eibjEij . (2.9)

Multiplying L(x) by the function(σ (x −1)σ(h)/σ(x −1+ h))eζ(π)(x−1)h/π , performing
the gauge transformation by means of the diagonal matrixeζ(π)(x−1)q/π , and making the
shift x → x +1 we obtain theL-operator of the elliptic Ruijsenaars–Schneider model:

LRuij(x) = σ(x)σ (h)

σ (x + h) e
ζ(π)xh/πeζ(π)xq/πL(x +1)e−ζ(π)xq/π . (2.10)

Let us briefly discuss the Hamiltonian. It is well known that the simplest non-trivial
Hamiltonian invariant with respect to the action of the current group is given by:

H =
∫

dx trC(x) (2.11)

whereα is a constant. It is not difficult to show that on the reduced phase space

Hred= 2π i√
N(1− e−ih)

N∑
i=1

bi (2.12)

that, up to a constant, is the simplest Hamiltonian of the elliptic Ruijsenaars–Schneider
model.
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3. The Poisson structure on the reduced space

In this section we are going to prove that the Poisson structure on the reduced phase
space does indeed coincide with the Poisson structure of the elliptic Ruijsenaars–Schneider
model. In other words we need Poisson brackets for the coordinatesD andb. According
to the general Dirac construction one should find a gauge invariant extension (we mean
the invariance under the action ofGisot) of functions on the reduced phase spacePred to a
vicinity of Pred and then calculate the Dirac bracket.

One can easily write down the gauge invariant extension for the matricesD andL(x)
while the bracket for the coordinatesDi and bi can be extracted from the bracket forD
andL(x). This extension appears as follows:

D→ D[A] = T −1[A](x −1)A(x)T [A](x +1) (3.1)

L(x)→ L[A,C](x) = T −1[A](x −1)C(x)T [A](x −1). (3.2)

Some comments are in order. Equation (3.1) is a solution of the factorization problem for
A(x). Generally this solution is not unique but we fix the matrixT [A] by the boundary
conditionT [A](0)e = e that kills the ambiguity and makes (3.1) to be correctly defined. It
is obvious that onPred: T [A] = 1 andL[A,C](x) = L(x).

We start with calculation of the Poisson bracket forL(x) and L(y). We postpone
discussion of the contribution from the second-class constraints to the Dirac bracket to the
end of the section. By definition, one has

{L1,L2}Pred = ({T1, T2}L1L2− L2{T1, T2}L1− L1{T1, T2}L2

+L1L2{T1, T2} + {C1, C2} − {T1, C2}L1− {C1, T2}L2

+ L2{C1, T2} + L1{T1, C2}) |Pred. (3.3)

Here we have taken into account thatT [A]|Pred = 1.
Let us first calculate

{Cij (x), Tkl(y)} =
∑
m,n

∫
dz {Cij (x), Amn(z)} δTkl(y)

δAmn(z)
.

Performing the variation of both sides of (3.1), we obtain

X(x) = t (x −1)D −Dt(x +1)+ d (3.4)

whereX(x) = δA(x), t (x) = δT (x) andd = δD.
The general solution of (3.4) is

t (x) = Q− 1

2πi

∑
i,j

∫
dz

1

Di

w(x − z, qij )Xij (z)Eij . (3.5)

HereQ is some constant diagonal matrix and the functionw(x, 0) should be understood as

w(x, 0) = lim
ε→0

(
w(x, ε)− i

1− e−iε

)
= ζ(x −1)− ζ(π)

π
(x −1)− i

2
.

Note that these functions solve the equations

1

2π i
(w(x +1, qij )− e−iqij w(x −1, qij )) = δ(x)− 1

2π
δij .

The solutiont (x) obeying the conditiont (0)e = 0 has the following form:

t (x) = 1

2π i

∑
i,j

∫
dz

(
1

Di

w(−z, qij )Xij (z)Eii − 1

Di

w(x − z, qij )Xij (z)Eij
)
. (3.6)
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Performing the variation of (3.6) with respect toXmn(z) one obtains

δTkl(x)

δAmn(z)

∣∣∣∣
Pred

≡ Qkl
mn(x +1, z) =

1

2π i

1

Dk

(w(−z, qkn)δklδkm − w(x − z, qkl)δkmδln).

Thus on the reduced space we obtain

1

γ
{C1(x), T2(y −1)}|red= κ12(x, y)L1(x)− L1(x)ω12(x, y)

where

κ12(x, y) = tr3

∫
dz (D3r

13
+ (x − z − 21)− r13

+ (x − z)D3)Q23(y, z)

ω12(x, y) = tr3

∫
dz (D3r

13
+ (x − z − 21)− r13

− (x − z)D3)Q23(y, z).

We also obtain
1

γ
{T1(x −1),C2(y)} = −Pκ12(y, x)PL2(y)+ L2(y)Pω12(y, x)P .

By using the relation

DjQ
kl
ij (x, z)−DiQ

kl
ij (x, z − 21) = δ(x − z)δikδjl − δ(z −1)δikδkl ≡ Sklij

we find

κij kl(x, y) = −r+(x − y)ij kl +
∑
m

r+(x −1)ij kmδkl

ωij kl(x, y) = kij kl(x, y)+ 2πDiQ
kl
ji (y, x).

Recall that
1

γ
{C1(x), C2(y)} = −r∓(x − y)C1(x)C2(y)− C1(x)C2(y)r±(x − y)

+C2(y)r+(x − y)C1(x)+ C1(x)r−(x − y)C2(y).

Substituting{C, T }, {T ,C} and{C,C} brackets into (3.3) we can rewrite the{L,L} bracket
in the following form:

1

γ
{L1(x),L2(y)}

∣∣∣∣
red

= −L1(x)L2(y)k
+(x, y)− k−(x, y)L1(x)L2(y)

+L1(x)s
−(x, y)L2(y)+ L2(y)s

+(x, y)L1(x) (3.7)

where

k−(x, y) = r−(x − y)+ κ12(x, y)− Pκ12(y, x)P − {T1(x −1), T2(y −1)}
k+(x, y) = r+(x − y)+ ω12(x, y)− Pω12(y, x)P − {T1(x −1), T2(y −1)}
s−(x, y) = r−(x − y)+ ω12(x, y)− Pκ12(y, x)P − {T1(x −1), T2(y −1)}
s+(x, y) = r+(x − y)+ κ12(x, y)− Pω12(y, x)P − {T1(x −1), T2(y −1)}.
It is easy to findPk±(x, y)P = −Pδ(x−y)−k±(y, x) andPs±(x, y)P = ±s∓(y, x). We
also have one more important identity:

k+(x, y)+ k−(x, y) = s+(x, y)+ s−(x, y).
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To complete the calculation we should find the bracket{Tij (x −1), Tkl(y −1)} on the
reduced space. The straightforward manipulations lead to a divergent result. By this reason
we define this bracket as follows:

{Tij (x −1), Tkl(y −1)}
= 1

2 lim
ε→0

({Tij (x −1), T εkl(y −1)} + {T εij (x −1), Tkl(y −1)})
whereT εkl(x) is defined as a solution of the factorization problem with the boundary condition
T (ε)e = e. We have

{Tij (x −1), T εkl(y −1)} =
∫

dz dz′ Qij
mn(x, z)Q

kl ε
sp (y, z′){Amn(z), Asp(z′)}

= γ
∫

dz dz′
(−r+(z − z′)mn sp(DnQ

ij
mn(x, z)

−DmQ
ij
mn(x, z − 21))Skl εsp (y, z′)

− 2πPmn spδ(z − z′ + 21)DmQ
ij
mn(x, z)S

kl ε
sp (y, z′)

)
.

One can prove the cancellation of the singularities asε→ 0. The result for the bracket
{T , T } is

1

γ
{Tij (x −1), Tkl(y −1)}

= − r+(x − y)ij kl +
∑
m

r+(x −1)ij kmδkl +
∑
m

r−(1− y)im klδij

+1

i
w(x − y +1, qik)δjkδil − 1

i
w(x, qik)δjkδkl + 1

i
w(y, qki)δij δil

+1

2
δij δikδil + 1

i

(
ζ(qik)− ζ(π)

π
qik

)
δij δkl(1− δik)

− 1

2

∑
a<b

(Eab − Eba)ikδij δkl .

Combining all the pieces together and taking into account the identitye−isw(x, s) =
−w(−x,−s) we obtain the following expression for the coefficients:

k−ij kl(x, y) = −
1

i
ζ(qik)δij δkl(1− δik)− 1

i
(ζ(x − y)+ ζ(y −1)− ζ(x −1)) δij δikδil

− 1

i

(
w(x − y +1, qik)δilδjk + w(y, qki)δilδij − w(x, qik)δjkδkl

)
(1− δik)

+ 1

i

ζ(π)

π
qikδij δkl + 1

2

∑
a<b

(Eab − Eba)ikδij δkl

k+ij kl(x, y) =
1

i

(
ζ(x − y)− ζ(π)

π
(x − y)

)
δij δikδil

+ 1

i

(
w(x − y +1, qik)δjkδil − ζ(qik)δij δkl

)
(1− δik)
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+ 1

i

ζ(π)

π
qikδij δkl + 1

2

∑
a<b

(Eab − Eba)ikδij δkl

s−ij kl(x, y) = −
1

i

(
ζ(y −1)− ζ(π)

π
(y −1)

)
δij δikδil

− 1

i

(
w(y, qki)δij δil + ζ(qik)δij δkl

)
(1− δik)

+ 1

i

ζ(π)

π
qikδij δkl + 1

2

∑
a<b

(Eab − Eba)ikδij δkl

s+ij kl(x, y) =
1

i

(
ζ(x −1)− ζ(π)

π
(x −1)

)
δij δikδil

+ 1

i

(
w(x, qik)δjkδkl − ζ(qik)δij δkl

)
(1− δik)

+ 1

i

ζ(π)

π
qikδij δkl + 1

2

∑
a<b

(Eab − Eba)ikδij δkl .

It is instructive to note that one can check by direct calculation that the termζ(π)qikδij δkl/iπ
in the expressions obtained for thek’s and thes’s does not contribute to the bracket{L,L}.

Recall (see equation (2.9)) that

Lii(x) = 1√
N
w(x, h)bi (3.8)

so to obtain the bracket{bi, bj } it is sufficient to examine only the{Lii, Ljj } bracket. The
crucial point which can be checked by the direct calculation is that the bracket ofLii with
the constraint (2.2) vanishes onPred in the limit ε→ 0. Thus, there is no contribution from
the Dirac term to the{Lii, Ljj } bracket.

By substituting the expressions obtained above fork ands in equation (3.7), one obtains
for i 6= j
1

γ
{Lii(x), Ljj (y)} = 1

i
Lji(x)Lij (y)w(x − y +1, qij )− 1

i
Lij (x)Lji(y)w(x − y +1, qji).

(3.9)

It follows from this equation that

i

γ
{bi, bj } = bibj w(x, sji)w(y, sij )w(x−y+1, qij )−w(x, sij )w(y, sji)w(x−y+1, qji)

w(x, h)w(y, h)
.

(3.10)

By using one of the known elliptic identities [8]†, we obtain

i

γ
{bi, bj } = bibj

(
2ζ(qij )− ζ(qij + h)− ζ(qij − h)

)
. (3.11)

To complete the examination of the Poisson structure on the reduced phase space one
should find the bracket{L,D} and{D,D}. Performing the straightforward but rather tedious

† It is interesting to note that this identity can easily be obtained from thex, y-independence condition for the
right-hand side of (3.10).
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calculations following the same line as above, we find

{D[A]1,D[A]2}|red= 0 (3.12)

1

γ
{L(x)1,D[A]2}|red= −

∑
i,j

Lij (x)DjEij ⊗ Ejj . (3.13)

It is worthwhile to point out that there are no Dirac terms in these brackets becauseD[A]

is invariant with respect to the action of the whole affine group̃GL(N).
Now for the convenience of the reader, we list the Poisson brackets obtained in terms

of the coordinates onPred:

{qi, qj } = 0

i

γ
{qi, bj } = bj δij

i

γ
{bi, bj } = bibj

(
2ζ(qij )− ζ(qij + h)− ζ(qij − h)

)
.

(3.14)

One can see that the dynamical system defined by (3.14) and (2.12) is simply the elliptic
Ruijsenaars–Schneider model.

In [7] the dynamicalr-matrix forLRuij was obtained by direct calculation with the help
of the Poisson structure (3.14). Comparing ther-matrix coefficientsk and s with those
in [7] we see that, in fact, they differ by the tensor1

2

∑
a<b(Eab − Eba)ikδij δkl . However,

in our calculations of the bracket{L,L} we ignored the contribution from the Dirac term.
We conjecture that the Dirac term is alone responsible for cancelling this tensor.

4. Equations of motion

The equations of motion for the Hamiltonian (2.12) are given by

Ḋ = {trL(x),D} = −γL(x)diag D (4.1)

and

L̇(y) = {trL(x), L(y)} = [L(y),M(x, y)] (4.2)

where

M(x, y) = −γ i
∑
kl

(w(x,−qkl)L(x)klEkk − w(x − y +1,−qkl)L(x)klEkl) . (4.3)

Here we use equation (3.7) and the explicit form ofk and s. Since trL(x) is invariant
function the contribution from the Dirac term vanishes. For the the convenience of the reader
we note that by using the elliptic function identities [8] one can rewriteM ≡ M(x+1, y+1)
in the following form:

M = γ

i
l(x, h)

(
ζ(x + h)− ζ(x − y)

l(y, h)
L(y +1)− (ζ(x + h)− ζ(x))

(∑
i

bi

)
I (4.4)

+
∑
k

Ekk
∑
i 6=k
(ζ(qik)− ζ(qik − h))bi − ζ(π)

π

∑
k

bkEkk (4.5)

+
∑
k 6=l

ζ(qkl)− ζ(qkl + y + h)
l(y, h)

Lkl(y +1)Ekl
)

(4.6)
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where we have introducedl(x, h) = w(x+1,h). The first two terms in (4.4) are irrelavant,
soM coincides with the standardM-matrix of the elliptic RS system.

We show that the general solution of the equations of motion for the elliptic Ruijsenaars–
Shneider model is given by

D(t) = D [e−2πγL0(x)tD0
]

(4.7)

whereD ≡ D[A] denotes the solution of the factoriztion problem (3.1):

A(x) = T (x −1)D[A]T (x +1)−1 (4.8)

andD0, andL0(x) are the coordinates and theL-operator att = 0, respectively.
To prove (4.7) we start with calculating the derivativeḊ(t):

Ḋ(t) =
∫

dz
δD[A]

δAij (z)

∣∣∣∣
A=At

d(At )ij (z)

dt
(4.9)

whereAt(x) = e−2πγL0(x)tD0. One can find the derivativeδD[A]/δAij (z) by performing
the variation of (4.8):

(T −1(x −1)δT (x −1))D[A] −D[A](T −1(x +1)δT (x +1))+ δD = X(x) (4.10)

where the notationX(x) = T −1(x−1)δA(x)T (x+1) was introduced. In contrast to (3.4),
in equation (4.10) we do not impose the constraintT = 1.

Now we solve (4.10) forδD:

δD =
∫

dx

2π
X(x)kkEkk. (4.11)

Equation (4.10) also allows one to find the matrix

T −1(x)δT (x) =
∑
k,l

∫
dz

2π i

(
1

Dk

w(−z, qkl)X(z)klEkk − 1

Dk

w(x − z, qkl)X(z)klEkl
)

(4.12)

which will be used in what follows. From equations (4.11), (4.12) we find

δD[A]kk
δAij (z)

= 1

2π
T −1
ki (z −1)Tjk(z +1) (4.13)

and(
T −1(x)

δT (x)

δAij (z)

)
kl

= δkl

2π i

∑
s

w(−z, qks)
Dk

T −1
ki (z −1)Tjs(z +1)

− 1

2π i

w(x − z, qkl)
Dk

T −1
ki (z −1)Tjl(z +1). (4.14)

Substituting equation (4.14) in (4.9) and taking into accountȦt (x) = −2πγL0(x)At(x),
we obtain

Ḋ(t)kk = −γ
∫

dz T −1
ki (z −1)L0(z)imTmn(z −1)T −1

ns (z −1)At(z)sjTjk(z +1)
(4.15)

which, with the help of (4.8), reads as follows:

Ḋ(t) = −γ
∫

dz (T −1(z −1)L0(z)T (z −1))diag D(t). (4.16)



5062 G E Arutyunov et al

The last formula implies the notation

L̂t (x) = T −1(x −1)(t)L0(x)T (x −1)(t) (4.17)

which provides the Lax representation dL̂t (x)/dt = [L̂t (x), M̂(x)] with M̂(x) = T −1(x −
1)Ṫ (x −1).

Let us show that the Lax operatorL̂t (x) coincides with theL-operator of the elliptic
Ruijsensaars–Schneider model. To this end we calculateM̂(x) explicitly. We have

M̂kl(x) =
∫ (

T −1(x −1)δT (x −1)
δAij (z)

)
kl

∣∣∣∣
A=At

dAt(z)ij
dt

.

Substituting equation (4.14) and using the relatione−isw(x, s) = −w(−x,−s) we obtain

M̂(x) = −γ i
∫

dz
∑
kl

(
w(z,−qkl)L̂t (z)klEkk − w(z − x +1,−qkl)L̂t (z)klEkl

)
. (4.18)

Note that this expression literally coincides with (4.3) if we changeL̂t for L. Since att = 0
the operatorŝL andL are equal toL0, they coincide for anyt .

5. Conclusion

We have proved that the elliptic Ruijsenaars–Schneider model can be obtained by means of
a reduction procedure. It is worth pointing out that we have used not the Hamiltonian, but
rather the Poisson reduction technique. Our construction is specified by the choice of the
trigonometricr-matrix for the Poisson structure on the HD and by fixing the special value
of the momentum map. By varying the right-hand side of the momentum map equation one
can derive some other systems. For instance, it is not difficult to specify the momentum
map equation in a way that leads to the elliptic Calogero–Moser model. It clarifies the
coincidence of the dynamicalr-matrices for these two models pointed out in [7].

We have considered the simplest example of the HD for̃GL(N). It seems to be
interesting to examine the Poissonian reductions of the HD that correspond to some other
choices of Lie groups orr-matrices.
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